Multiscale analysis of thermoregulation in the human microvascular system
- verfasst von
- Peter Deuflhard, Reinhard Hochmuth
- Abstract
The bio-heat transfer equation is a macroscopic model for describing the heat transfer in microvascular tissue. So far the derivation of the Helmholtz term arising in the bio-heat transfer equation is not completely satisfactory. Here we use homogenization techniques to show that this term may be understood as asymptotic result of boundary value problems which provide a microscopic description for microvascular tissue. An appropriate scaling of so-called heat transfer coefficients in Robin boundary conditions on tissue-blood boundaries is seen to play the crucial role. In view of a future application of our new mathematical model for treatment planning in hyperthermia, we derive asymptotic estimates for the first-order corrector.
- Organisationseinheit(en)
-
Fakultät für Mathematik und Physik
- Externe Organisation(en)
-
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Albert-Ludwigs-Universität Freiburg
- Typ
- Artikel
- Journal
- Mathematical Methods in the Applied Sciences
- Band
- 27
- Seiten
- 971-989
- Anzahl der Seiten
- 19
- ISSN
- 0170-4214
- Publikationsdatum
- 25.05.2004
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik, Allgemeiner Maschinenbau
- Elektronische Version(en)
-
https://doi.org/10.1002/mma.499 (Zugang:
Unbekannt)