Stable multiscale bases and local error estimation for elliptic problems

verfasst von
Stephan Dahlke, Wolfgang Dahmen, Reinhard Hochmuth, Reinhold Schneider
Abstract

This paper is concerned with the analysis of adaptive multiscale techniques for the solution of a wide class of elliptic operator equations covering, in principle, singular integral as well as partial differential operators. The central objective is to derive reliable and efficient a-posteriori error estimators for Galerkin schemes which are based on stable multiscale bases. It is shown that the locality of corresponding multiresolution processes combined with certain norm equivalences involving weighted sequence norms of wavelet coefficients leads to adaptive space refinement strategies which are guaranteed to converge in a wide range of cases, again including operators of negative order.

Externe Organisation(en)
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Freie Universität Berlin (FU Berlin)
Technische Universität Darmstadt
Typ
Artikel
Journal
Applied numerical mathematics
Band
23
Seiten
21-47
Anzahl der Seiten
27
ISSN
0168-9274
Publikationsdatum
02.1997
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Numerische Mathematik, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1016/S0168-9274(96)00060-8 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“