N-term approximation in anisotropic function spaces

verfasst von
Reinhard Hochmuth
Abstract

In L2((0, 1)2) infinitely many different biorthogonal wavelet bases may be introduced by taking tensor products of one-dimensional biorthogonal wavelet bases on the interval (0, 1). Most well-known are the standard tensor product bases and the hyperbolic bases. In [23, 24] further biorthogonal wavelet bases are introduced, which provide wavelet characterizations for functions in anisotropic Besov spaces. Here we address the following question: Which of those biorthogonal tensor product wavelet bases is the most appropriate one for approximating nonlinearly functions from anisotropic Besov spaces? It turns out, that the hyperbolic bases lead to nonlinear algorithms which converge as fast as the corresponding schemes with respect to specific anisotropy adapted bases.

Externe Organisation(en)
Technische Universität Bergakademie Freiberg
Typ
Artikel
Journal
Mathematische Nachrichten
Band
244
Seiten
131-149
Anzahl der Seiten
19
ISSN
0025-584X
Publikationsdatum
2002
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://doi.org/10.1002/1522-2616(200210)244:1<131::AID-MANA131>3.0.CO;2-G (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“