Wavelet decompositions of L 2 -functionals

verfasst von
H. Haf, R. Hochmuth
Abstract

Based on distribution-theoretical definitions of L 2 and Sobolev spaces given by Werner in [P. Werner (1970). A distribution-theoretical approach to certain Lebesgue and Sobolev spaces. J. Math. Anal. Appl., 29, 19–78.] real interpolation, Besov type spaces and approximation spaces with respect to multiresolution approximations are considered. The key for the investigation are generalized moduli of smoothness introduced by Haf in [H. Haf (1992). On the approximation of functionals in Sobolev spaces by singular integrals. Applicable Analysis, 45, 295–308.]. Those moduli of smoothness allow to connect the concept of L 2 -functionals with more recent developments in multiscale analysis, see e.g. [W. Dahmen (1995). Multiscale analysis, approximation, and interpolation spaces. In: C.K. Chui and L.L. Schumaker (Eds.), Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation, pp. 47–88.]. In particular, we derive wavelet characterizations for the Sobolev spaces introduced by Werner and establish stable wavelet decompositions of L 2 -functionals. Generalizations to more general spaces of functionals and applications are also mentioned.

Externe Organisation(en)
Universität Kassel
Technische Universität Bergakademie Freiberg
Typ
Artikel
Journal
International Journal of Phytoremediation
Band
83
Seiten
1187-1209
Anzahl der Seiten
23
ISSN
1522-6514
Publikationsdatum
12.2004
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Umweltchemie, Umweltverschmutzung, Pflanzenkunde
Elektronische Version(en)
https://doi.org/10.1080/00036810410001724698 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“