Adaptive wavelet methods for saddle point problems

verfasst von
Stephan Dahlke, Reinhard Hochmuth, Karsten Urban
Abstract

Recently, adaptive wavelet strategies for symmetric, positive definite operators have been introduced that were proven to converge. This paper is devoted to the generalization to saddle point problems which are also symmetric, but indefinite. Firstly, we investigate a posteriori error estimates and generalize the known adaptive wavelet strategy to saddle point problems. The convergence of this strategy for elliptic operators essentially relies on the positive definite character of the operator. As an alternative, we introduce an adaptive variant of Uzawa's algorithm and prove its convergence. Secondly, we derive explicit criteria for adaptively refined wavelet spaces in order to fulfill the Ladyshenskaja-Babuška Brezzi (LBB) condition and to be fully equilibrated.

Externe Organisation(en)
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Freie Universität Berlin (FU Berlin)
Typ
Artikel
Journal
Mathematical Modelling and Numerical Analysis
Band
34
Seiten
1003-1022
Anzahl der Seiten
20
ISSN
0764-583X
Publikationsdatum
2000
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Numerische Mathematik, Modellierung und Simulation, Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1051/m2an:2000113 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“