Stable Multiscale Discretizations for Saddle Point Problems and Preconditioning

verfasst von
Reinhard Hochmuth
Abstract

Stability for discretizations of saddle point problems is typically the result of satisfying the discrete Babuška-Brezzi condition. As a consequence a number of natural discretizations are ruled out and some effort is required to provide stable ones. Therefore ideas for circumventing the Babuška-Brezzi condition are interesting. Here an ansatz presented in a series of papers by Hughes et al. is described and investigated in the framework of multiscale discretizations. In particular discretizations for appending boundary conditions by Lagrange multipliers and the stationary Stokes problem are considered. Sufficient conditions for their stability are given and diagonal preconditioners which give uniformly bounded condition numbers are proposed.

Organisationseinheit(en)
Institut für Didaktik der Mathematik und Physik
Externe Organisation(en)
Freie Universität Berlin (FU Berlin)
Typ
Artikel
Journal
Numerical Functional Analysis and Optimization
Band
19
Seiten
789-806
Anzahl der Seiten
18
ISSN
0163-0563
Publikationsdatum
1998
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Signalverarbeitung, Angewandte Informatik, Steuerung und Optimierung
Elektronische Version(en)
https://doi.org/10.1080/01630569808816859 (Zugang: Unbekannt)